Missing frequencies

 TO WHOMSOEVER CONCERN

       In a series of 5 observations the mean and variance are 4.4 and 8.24.                   r54 If three observations are 1, 2, 6 find other two.                                                                              

              Data:-   1, 2, 6          Mean x' =4.4     Variance =8.24    N=5             

                                                                                        

              Let the other two numbers be x and y.                                                                      

              The sum of all numbers = 1+2+6 =9                                          

              The numbers are 1, 2, 6, , x, y                                                                       

              There are 5 numbers                   N=5       Mean =       4.4                            

              We know that x' = (sum of the frequencies)/N                                                         

              NX' =sum of the frequencies =22     22=  1+2+6+x+y=9+x+y               

                                  x+y = 22-9 =13                      

              Variance =8.24         ϭ^2 =    8.24                          

              Ϭ^2 = Variance =1/N(ƩXi-X’) ^2                                                        Frequencies: -          1,    2,    6,    x,    y                  

              Xi -X'                   -3.4 -2.4 1.6 x-4.4     y-4.4                  

       Ʃ(Xi-X')^2=  11.56        + 5.76         +  2.56         +       (x4.4)^2+   (y-4.4)^2

       Ʃ(Xi-X’) ^2 =       19.88       +  (x-4.4)^2        +  (y-4.4)^2                                               

       σ^2 =    {     19.88    +    (x-4.4)^2       +   (y-7-4.4)^2  }  /5      =8.24

       19.88    +    (x-4.4)^2       +   (y-4.4)^2 =41.20     

       (x-4.4)^2       +   (y-4.4)^2       =   21.32                        

       x     +    y        =  13   (i)                

       (x-4.4)^2       +   (y-4.4)^2       =   21.32    (ii)               

       By substituting        y = 13-x in (ii)    (x-4.4)^2        +       (8.6-x)^ =21.32                     

             x^2 - 8.8x +19.36 + 73.96 - 17.2x + x^2 = 21.32                              

       2x^2 - 26x + 93.32 = 21.32                                           

                           2x^2 - 26x +72   = 0                                                        

                           x^2 -13x + 36 =    0                                                         

                           x^2 - 9x - 4x +36 = 0                                                       

                           x(x-9) -4(x-9) = 0                                                            

                           (x-9) (x-4) = 0                                                           

                           That is x=9 or 4                                                       

       In a series of 5 observations the other two numbers are 4 and 9.

Verification: - X’ = Ʃx/N = (1+2+4+6+9/5 = 22/5 = 4.4

                                                                          


Featured Post

Sarvamoola grantha parichaya

Sarvamoola Granthagala parichaya By Shri Nagendrachar   To understand Bhagavantha is a great sadhana.   In the ancient days people w...